8-Bit Serial or Parallel-Input/ Serial-Output Shift Register High-Performance Silicon-Gate CMOS

MC74HC165A

The M C74HC165A is identical in pinout to the LS165. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.
This device is an 8-bit shift register with complementary outputs from the last stage. Data may be loaded into the register either in parallel or in serial form. When the Serial Shift/Parallel Load input is low, the data is loaded asynchronously in parallel. When the Serial Shift/Parallel Load input is high, the data is loaded serially on the rising edge of either Clock or Clock Inhibit (see the Function Table).
The 2-input NOR clock may be used either by combining two independent clock sources or by designating one of the clock inputs to act as a clock inhibit.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CM OS, NM OS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 uA
- High Noise Immunity Characteristic of CM OS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 286 FETs or 71.5 Equivalent G ates
- NLV Prefix for Automotive and Other A pplications Requiring Unique Site and Control Change Requirements; A EC-Q100 Qualified and PPA P Capable
- These Devices are Pb-F ree, Halogen Free and are RoHS Compliant

ON Semiconductor ${ }^{\text {® }}$

www.onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MC74HC 165A

$\frac{\text { SERIAL SHIFT/ }}{\text { PARALLEL LOAD }}$	$1 \bullet$	16	V_{CC}
CLOCK	2	15	CLOCK INHIBIT
E 1	3	14]
F	4	13	C
G [5	12]
H	6	11	A
\bar{Q}_{H} C	7	10	S_{A}
GND	8	9	Q_{H}

Figure 1. Pin Assignments

Figure 2. Logic Diagram

FUNCTION TABLE

Inputs					Internal Stages		Output$\mathbf{Q}_{\mathbf{H}}$	Operation
Serial Shift/ Parallel Load	Clock	Clock Inhibit	$\mathbf{S}_{\text {A }}$	A-H		$\mathbf{Q}_{\text {B }}$		
L	X	X	X	a \ldots h	a	b	h	Asynchronous Parallel Load
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\widetilde{\Omega}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{An}} \\ & \mathrm{Q}_{\mathrm{An}} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{Gn}} \\ & \mathrm{Q}_{\mathrm{Gn}} \end{aligned}$	Serial Shift via Clock
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	Γ	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{An}} \\ & \mathrm{Q}_{\mathrm{An}} \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{Gn}} \\ & \mathrm{Q}_{\mathrm{Gn}} \end{aligned}$	Serial Shift via Clock Inhibit
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	No Change			Inhibited Clock
H	L	L	X	X	No Change			No Clock

$X=$ don't care $\quad Q_{A n}-Q_{G n}=$ Data shifted from the preceding stage

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{V}_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\text {CC }}+0.5$	V
$V_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\text {CC }}+0.5$	\checkmark
1 in	DC Input Current, per P in	± 20	mA
Iout	DC Output Current, per Pin	± 25	mA
ICC	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air Plastic DIP \dagger SOIC Package \dagger TSSOP Package \dagger	$\begin{aligned} & 750 \\ & 500 \\ & 450 \end{aligned}$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	- 65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP, SOIC or TSSOP Package)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
\dagger Derating - Plastic DIP:- $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: - $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	GND)	Operating Temperature, All Package Types	-55	+125
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	${ }^{\circ} \mathrm{C}$		
	(Figure 1)	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0	1000
		$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	600
	$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	500	
		$\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		400

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\underset{\mathbf{V}}{\mathbf{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit			
				- 55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125{ }^{\circ} \mathrm{C}$				
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V			
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.80 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.80 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.80 \end{gathered}$	V			
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V			
		$\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} & \\|_{\text {out }} \leq 2.4 \mathrm{~mA} \\ & \\|_{\text {out }} \leq 4.0 \mathrm{~mA} \\ & \\|_{\text {out }} \leq 5.2 \mathrm{~mA} \end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 3.70 \\ & 5.20 \end{aligned}$	V			

MC74HC 165A

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\underset{\mathbf{V}}{\mathbf{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit			
				- 55 to $25^{\circ} \mathrm{C}$	$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$				
VoL	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \\|_{\text {out }} \leq 20 \leq \mathrm{A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V			
		$\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \\|_{\text {out }} \leq 2.4 \mathrm{~mA} \\ & \\|_{\text {out }} \leq 4.0 \mathrm{~mA} \\ & \\|_{\text {out }} \leq 5.2 \mathrm{~mA} \end{array}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$				
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {cc }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$			
ICC	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & V_{\text {in }}=V_{C C} \text { or } G N D \\ & l_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4	40	160	$\mu \mathrm{A}$			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	$\underset{\mathbf{V}}{\mathbf{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			- 55 to $25^{\circ} \mathrm{C}$	$\leq \mathbf{8 5}^{\circ} \mathrm{C}$	$\leq 125{ }^{\circ} \mathrm{C}$	
$\mathrm{f}_{\max }$	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 8)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 6 \\ 18 \\ 30 \\ 35 \end{gathered}$	$\begin{aligned} & \hline 4.8 \\ & 17 \\ & 24 \\ & 28 \end{aligned}$	$\begin{gathered} \hline 4 \\ 15 \\ 20 \\ 24 \end{gathered}$	MHz
$\overline{t_{\text {PLH }}}$ $\mathrm{t}_{\mathrm{PHL}}$	Maximum Propagation Delay, Clock (or Clock Inhibit) to Q_{H} or $\overline{\mathrm{Q}}_{\mathrm{H}}$ (Figures 1 and 8)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 150 \\ & 52 \\ & 30 \\ & 26 \end{aligned}$	$\begin{gathered} \hline 190 \\ 63 \\ 38 \\ 33 \end{gathered}$	$\begin{gathered} 225 \\ 65 \\ 45 \\ 38 \end{gathered}$	ns
$\begin{aligned} & \text { tplu, } \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Serial Shift/Parallel Load to Q_{H} or $\overline{\mathrm{Q}}_{\mathrm{H}}$ (Figures 2 and 8)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 175 \\ 58 \\ 35 \\ 30 \end{gathered}$	$\begin{gathered} \hline 220 \\ 70 \\ 44 \\ 37 \end{gathered}$	$\begin{gathered} 265 \\ 72 \\ 53 \\ 45 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{tpLH}^{\prime} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Input H to Q_{H} or $\overline{\mathrm{Q}}_{\mathrm{H}}$ (Figures 3 and 8)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 150 \\ 52 \\ 30 \\ 26 \end{gathered}$	$\begin{gathered} \hline 190 \\ 63 \\ 38 \\ 33 \end{gathered}$	$\begin{gathered} 225 \\ 65 \\ 45 \\ 38 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\text {TLH }}, \\ & \mathrm{t}_{\mathrm{TH}}, \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 1 and 8)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 110 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF

		Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{~ V}$	
C $_{\text {PD }}$	Power Dissipation Capacitance (Per Package)*	40	pF

*Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$.

MC74HC 165A

TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$)

Symbol	Parameter	$\underset{\mathbf{V}}{\mathbf{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			- 55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125{ }^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Parallel Data Inputs to Serial Shift/ParalleI Load (Figure 4)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} 110 \\ 55 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Input SA to Clock (or Clock Inhibit) (Figure 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} 110 \\ 55 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Serial ShittParalleI Load to Clock (or Clock Inhibit) (Figure 6)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 110 \\ 55 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Clock to Clock Inhibit (Figure 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 110 \\ 55 \\ 22 \\ 19 \end{gathered}$	ns
th_{h}	Minimum Hold Time, Serial Shift/P arallel Load to P arallel Data Inputs (Figure 4)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, Clock (or Clock Inhibit) to Input SA (Figure 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	ns
t_{h}	Minimum Hold Time, Clock (or Clock Inhibit) to Serial Shift/Parallel Load (Figure 6)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	ns
trec	Minimum Recovery Time, Clock to Clock Inhibit (Figure 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} 110 \\ 55 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Clock (or Clock Inhibit) (Figure 1)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 32 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 100 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$t_{\text {w }}$	Minimum Pulse width, Serial Shift/Parallel Load (Figure 2)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 32 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} 100 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 1)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	ns

MC74HC 165A

PIN DESCRIPTIONS

INPUTS

A, B, C, D, E, F, G, H (Pins 11, 12, 13, 14, 3, 4, 5, 6)

Parallel Data inputs. Data on these inputs are asynchronously entered in parallel into the internal flip-flops when the Serial Shift/Parallel Load input is low.

SA (Pin 10)

Serial Data input. When the Serial Shift/Parallel Load input is high, data on this pin is serially entered into the first stage of the shift register with the rising edge of the Clock.

CONTROL INPUTS

Serial Shift/Parallel Load (Pin 1)

D ata-entry control input. W hen a high level is applied to this pin, data at the Serial Data input (SA) are shifted into the register with the rising edge of the Clock. When a low level
is applied to this pin, data at the Parallel Data inputs are asynchronously loaded into each of the eight internal stages.

Clock, Clock Inhibit (Pins 2, 15)

Clock inputs. These two clock inputs function identically. Either may be used as an active-high clock inhibit. However, to avoid double clocking, the inhibit input should go high only while the clock input is high.

The shift register is completely static, allowing Clock rates down to DC in a continuous or intermittent mode.

OUTPUTS

$\mathbf{Q}_{\mathbf{H}}, \overline{\mathbf{Q}}_{\mathbf{H}}$ (Pins 9, 7)

Complementary Shift Register outputs. These pins are the noninverted and inverted outputs of the eighth stage of the shift register.

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74HC165ANG	$\begin{gathered} \hline \text { PDIP-16 } \\ \text { (Pb-Free) } \end{gathered}$	500 Units / Rail
MC74HC165ADG	$\begin{aligned} & \text { SOIC-16 } \\ & \text { (Pb-Free) } \end{aligned}$	48 Units / Rail
MC74HC165ADR2G		2500 Units / Reel
NLV74HC165ADR2G*		2500 Units / Reel
MC74HC165ADTR2G	$\begin{aligned} & \text { TSSOP-16 } \\ & \text { (Pb-Free) } \end{aligned}$	2500 Units / Reel
NLV74HC165ADTR2G*		2500 Units / Reel
MC74HC165AMNTWG	QFN16 (Pb-Free)	3000 Units / Reel
MC74HC165AMN2TWG		3000 Units / Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BR D8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

SWITCHING WAVEFORMS

Figure 3. Serial-Shirt Mode

Figure 5. Parallel-Load Mode

Figure 7. Serial-Shift Mode

Figure 9. Serial-Shift, Clock-Inhibit Mode

Figure 4. Parallel-Load Mode

Figure 6. Parallel-Load Mode

Figure 8. Serial-Shift Mode

*Includes all probe and jig capacitance
Figure 10. Test Circuit

MC 74HC 165A

EXPANDED LOGIC DIAGRAM

TIMING DIAGRAM

QFN16, 2.5x3.5, 0.5P
CASE 485AW-01
ISSUE 0
DATE 11 DEC 2008
SCALE 2:1

*For additional information on our Pb -F ree strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON36347E	Electronic versions are uncontrolled except when accessed directy from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	QFN16, 2.5X3.5, 0.5P	PAGE $10 F 1$

[^0] rights of others.

STYLE 1.	
PIN 1.	COLLECTOR
2.	BASE
3.	EMITTER
4.	NO CONNECTION
5.	EMITTER
6.	BASE
7.	COLLECTOR
8.	COLLECTOR
9.	BASE
10.	EMITTER
11.	NO CONNECTION
12.	EMITTER
13.	BASE
14.	COLLECTOR
15.	EMITTER
16.	COLLECTOR

STYLE 2:	
PIN 1.	CATHODE
2.	ANODE
3.	NO CONNECTION
4.	CATHODE
5.	CATHODE
6.	NO CONNECTION
7.	ANODE
8.	CATHODE
9.	CATHODE
10.	ANODE
11.	NO CONNECTION
12.	CATHODE
13.	CATHODE
14.	NO CONNECTION
15.	ANODE
16.	CATHODE

STYLE 3:		STYLE 4:	
PIN 1.	COLLECTOR, DYE \#1	PIN 1.	COLLECTOR, DYE \#1
2.	BASE, \#1	2.	COLLECTOR, \#1
3.	EMITTER, \#1	3.	COLLECTOR, \#2
4.	COLLECTOR, \#1	4.	COLLECTOR, \#2
5.	COLLECTOR, \#2	5.	COLLECTOR, \#3
6.	BASE, \#2	6.	COLLECTOR, \#3
7.	EMITTER, \#2	7.	COLLECTOR, \#4
8.	COLLECTOR, \#2	8.	COLLECTOR, \#4
9.	COLLECTOR, \#3	9.	BASE, \#4
10.	BASE, \#3	10.	EMITTER, \#4
11.	EMITER, \#3	11.	BASE, \#3
12.	COLLECTOR, \#3	12.	EMITTER, \#3
13.	COLLECTOR, \#4	13.	BASE, \#2
14.	BASE, \#4	14.	EMITTER, \#2
15.	EMITTER, \#4	15.	BASE, \#1
16.	COLLECTOR, \#4	16.	EMITTER, \#1

SOLDERING FOOTPRINT

STYLE 5:		STYLE 6:	
PIN 1.	DRAIN, DYE \#1	PIN 1.	CATHODE
2.	DRAIN, \#1	2.	CATHODE
3.	DRAIN, \#2	3.	CATHODE
4.	DRAIN, \#2	4.	CATHODE
5.	DRAIN, \#3	5.	CATHODE
6.	DRAIN, \#3	6.	CATHODE
7.	DRAIN, \#4	7.	CATHODE
8.	DRAIN, \#4	8.	CATHODE
9.	GATE, \#4	9.	ANODE
10.	SOURCE, \#4	10.	ANODE
11.	GATE, \#3	11.	ANODE
12.	SOURCE, \#3	12.	ANODE
13.	GATE, \#2	13.	ANODE
14.	SOURCE, \#2	14.	ANODE
15.	GATE, \#1	15.	ANODE
16.	SOURCE, \#1	16.	ANODE

STYLE 7:
PIN 1. SOURCE N-CH
2. COMMON DRAIN (OUTPUT)
3. COMMON DRAIN (OUTPUT)
4. GATE P-CH
5. COMMON DRAIN (OUTPUT)
6. COMMON DRAIN (OUTPUT)
7. COMMON DRAIN (OUTPUT)
8. SOURCE P-CH
9. SOURCE P-CH
10. COMMON DRAIN (OUTPUT)
11. COMMON DRAIN (OUTPUT)
12. COMMON DRAIN (OUTPUT)
13. GATE N-CH
$\begin{array}{lll}\text { 14. SOURCE, \#2 } & \text { 14. ANODE } & \text { 14. COMMON DRAIN (OUTPUT) } \\ \text { 15. GATE, \#1 } & \text { 15. ANODE } & \text { 15. COMMON DRAIN (OUTPUT) }\end{array}$
16. SOURCE, \#1
16. SOURCE N-CH

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directy from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

[^1] rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directy from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@ onsemi.com
ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/C anada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support

Phone: 00421337902910
For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

ON Semiconductor:

[^2]
[^0]: ON Semiconductor and 3 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^1]: ON Semiconductor and 13 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^2]: MC74HC165AD MC74HC165ADG MC74HC165ADR2 MC74HC165ADR2G MC74HC165ADTR2
 MC74HC165ADTR2G MC74HC165AF MC74HC165AFEL MC74HC165AFELG MC74HC165AFG MC74HC165AN
 MC74HC165ANG NLV74HC165ADTR2G NLV74HC165ADR2G NLVHC165ADR2G MC74HC165AMNTWG
 MC74HC165AMN2TWG

